The Complex Gaussian Kernel LMS Algorithm
نویسندگان
چکیده
Although the real reproducing kernels are used in an increasing number of machine learning problems, complex kernels have not, yet, been used, in spite of their potential interest in applications such as communications. In this work, we focus our attention on the complex gaussian kernel and its possible application in the complex Kernel LMS algorithm. In order to derive the gradients needed to develop the complex kernel LMS (CKLMS), we employ the powerful tool of Wirtinger’s Calculus, which has recently attracted much attention in the signal processing community. Writinger’s calculus simplifies computations and offers an elegant tool for treating complex signals. To this end, the notion of Writinger’s calculus is extended to include complex RKHSs. Experiments verify that the CKLMS offers significant performance improvements over the traditional complex LMS or Widely Linear complex LMS (WL-LMS) algorithms, when dealing with nonlinearities.
منابع مشابه
Utilizing Kernel Adaptive Filters for Speech Enhancement within the ALE Framework
Performance of the linear models, widely used within the framework of adaptive line enhancement (ALE), deteriorates dramatically in the presence of non-Gaussian noises. On the other hand, adaptive implementation of nonlinear models, e.g. the Volterra filters, suffers from the severe problems of large number of parameters and slow convergence. Nonetheless, kernel methods are emerging solutions t...
متن کاملFrequency Estimation of Unbalanced Three-Phase Power System using a New LMS Algorithm
This paper presents a simple and easy implementable Least Mean Square (LMS) type approach for frequency estimation of three phase power system in an unbalanced condition. The proposed LMS type algorithm is based on a second order recursion for the complex voltage derived from Clarke's transformation which is proved in the paper. The proposed algorithm is real adaptive filter with real parameter...
متن کاملExtension of Wirtinger's Calculus in Reproducing Kernel Hilbert Spaces and the Complex Kernel LMS
Over the last decade, kernel methods for nonlinear processing have successfully been used in the machine learning community. The primary mathematical tool employed in these methods is the notion of the Reproducing Kernel Hilbert Space. However, so far, the emphasis has been on batch techniques. It is only recently, that online techniques have been considered in the context of adaptive signal pr...
متن کاملKernel least mean square algorithm with constrained growth
The linear least mean squares (LMS) algorithm has been recently extended to a reproducing kernel Hilbert space, resulting in an adaptive filter built from a weighted sum of kernel functions evaluated at each incoming data sample. With time, the size of the filter as well as the computation and memory requirements increase. In this paper, we shall propose a new efficient methodology for constrai...
متن کاملRelative Loss Bounds and Polynomial-Time Predictions for the k-lms-net Algorithm
We consider a two-layer network algorithm. The first layer consists of an uncountable number of linear units. Each linear unit is an LMS algorithm whose inputs are first “kernelized.” Each unit is indexed by the value of a parameter corresponding to a parameterized reproducing kernel. The first-layer outputs are then connected to an exponential weights algorithm which combines them to produce t...
متن کامل